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Public Key Cryptography today

With the quantum computer on the horizon, new public key
cryptosystems have to be designed.

Many new ideas are developed, based on e.g. lattices, codes, isogenies,
systems of equations.
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Codes
Classical coding theory is largely concerned with linear codes over a finite
field.

Definition (Code)

A linear [n, k, d ]-code C ≤ Fn
q is a k-dimensional subspace of Fn

q such that

d = min
x ,y∈C,x 6=y

#{j ∈ {1, . . . , n} : xj 6= yj}.

The distance used is the Hamming distance. Classical problems:

I Find codes that are "optimal" (achieve maximal d with fixed n, k)

I Find for a given point x ∈ Fn
q the point in C closest to x . (decoding

problem)
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Cryptography via Coding Theory

Definition (McEliece cryptosystem - High level view)

I Alice (recipient) chooses a code with good parameters and efficient
decoding

I Alice "scrambles" the code and publishes the scrambled code.
Attackers are not able to "unscramble" the code.

I Bob (sender) encodes his message with the public, scrambled code
and adds an error.

I Alice can "unscramble" the code and use the efficient decoding
algorithm.

I An attacker has no access to an efficient decoding algorithm because
they cannot unscramble the code.
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Cryptography via Coding Theory

In order for the McEliece cryptosystem to work:

I We must know families of good codes with efficient decoding
algorithms

I The attacker should not be able to "unscramble" the code

I decoding of the "scrambled" code should be difficult.

To ensure this, the code has to be large enough, resulting in large key
sizes.
This is the major drawback of code-based cryptography!
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A new approach
If decoding of a random code was harder, we could use smaller codes and
thus smaller keys. We can use non-classical coding theory like
rank-metric codes!

Definition (Rank-metric code)

Let Mn,m(Fq) the set of n ×m-matrices over Fq. A linear rank-metric
code is a subspace C ≤ Mn,m(Fq) with minimum distance

d = min
X ,Y∈C,X 6=Y

rk(X − Y ).

The distance used here is the rank metric.

Decoding in the rank metric (seems to be) harder than in the Hamming
metric.
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McEliece in the rank metric

We can adapt the McEliece cryptosystem to rank-metric codes without
any difficulties.

But: We need to find good rank-metric codes!

2 of 7 code-based cryptosystems in the 2nd round of the recent NIST
post-quantum cryptography competition were McEliece-like using
rank-metric codes.

NIST encouraged further work on rank-metric code based cryptography.
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Constructions of rank-metric codes
What is a good rank-metric code?

Theorem (Singleton-like bound, Delsarte 1978)

Suppose C ≤ Mn,m(Fq) with minimum distance d. Then

|C| ≤ qn(m−d+1).

Rank-metric codes satisfying the bound with equality are called
maximum rank distance (MRD) code.

There are few constructions of MRD codes and even less have efficient
decoding algorithms.

Most constructions of MRD codes are related to an algebraic structure
called semifield.
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Semifields

Definition
A (finite) semifield S = (S,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S,+) is a group.
(S2) For all x , y , z ∈ S,

I x ◦ (y + z) = x ◦ y + x ◦ z,
I (x + y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x , y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.
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Basic properties

If ◦ is associative then S is essentially a finite field (Wedderburn’s
Theorem).

The additive group of a semifield (S,+, ◦) is always an elementary
abelian p-group.

We can thus identify the additive group of a semifield S with the additive
group of the finite field Fpn .

Semifields were studied in pure mathematics for decades because of
connections to finite geometry and difference sets.
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Connecting semifields and MRD codes
We have a simple key connection.

Theorem
Let S = (Fn

q,+, ◦) be a semifield. Then the set of left-multiplications

Lx (y) = x ◦ y , C = {Lx : x ∈ Fn
q}

defines a linear MRD code with parameters d = m = n.

Note: The distributivity law x ◦ (y + z) = x ◦ y + x ◦ z implies that Lx is
a linear mapping.

The MRD codes constructed by semifields are square, full rank MRD
codes.
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Connecting semifields and MRD codes

Even more:

Theorem (de la Cruz, Kiermaier, Wassermann, Willems, 2015)

There is a 1-1 correspondence between finite semifields and linear, square
full rank MRD codes.

And even more: Almost all other known constructions of MRD codes
start from a square full rank MRD code - and are thus connected to
semifields.
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Connecting semifields and MRD codes

The oldest known MRD code is the Gabidulin code .

Gabidulin codes ≈ Reed-Solomon codes in the rank metric.

They are related to the full rank MRD code obtained by choosing
S = Fqn .

There is an efficient decoding algorithm for Gabidulin codes!

McEliece style cryptosystems based on Gabidulin codes have been
proposed (e.g. Gabidulin 1991, Loidreau 2017), but many were broken.
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Connecting semifields and MRD codes

Problem: Gabidulin codes have a lot of structure (like invariant
subspaces).

Ideas:

I Tweak the McEliece system with Gabidulin codes (e.g. RQC
proposal to NIST)

I Find other MRD (or almost-MRD) codes that can be decoded
efficiently
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Connecting semifields and MRD codes

Goal
Construct more semifields and investigate the resulting MRD codes.

Things to look out for:

I Commutative semifields yield MRD codes that can be stored as
symmetric matrices

I Different semifields might yield equivalent codes
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Definition (Isotopy)

Two semifields S1 = (Fn
p,+, ◦1) and S2 = (Fn

p,+, ◦2) are isotopic if there
exist Fp-linear bijections L,M and N of Fpn satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N, L,M) is called an isotopism between S1 and S2.

Definition (Autotopism and the Autotopism group)

The autotopism group Aut(S) of a semifield S = (Fn
p,+, ◦) is defined by

Aut(S) = {(N, L,M) ∈ GL(Fpn )3 : N(x ◦ y) = L(x) ◦M(y)}.

Two semifields are isotopic iff the associated rank-metric codes are
equivalent.
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Examples of families of semifields

Example (Twisted fields, Albert, 1961)

Let K = Fpn , n > 2, and define ◦ : K → K via

x ◦ y = xy − axqy r ,

where a /∈ Fq−1
pn · Fr−1

pn and q, r are powers of p. Then S = (K ,+, ◦) is a
semifield.

The twisted fields yield twisted Gabidulin codes as MRD codes (Sheekey,
2015).
Efficient decoding algorithms for twisted Gabidulin codes have been
found (e.g. Randrianarisoa, Rosenthal, 2017) and have been proposed for
use in McEliece-like cryptosystems.
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Examples of families of semifields

Example (Dickson, 1905)

Let K = Fpm × Fpm with p odd and define ◦ : K × K → K via

(x , y) ◦ (u, v) = (xu + a(yv)q, xv + yu),

where a is a non-square in Fpm and q is a power of p. Then
S = (K ,+, ◦) is a (commutative) semifield.

This is a bivariate construction.
There are many bivariate constructions!
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The known commutative semifields of size pn, p odd
Until 2022:

Family Count Proven in Bivariate?
The finite field 1 trivial ≈ Yes

Dickson ≈ n/4 1905 Yes
Albert’s twisted Fields ≈ n/2 1961 ≈ Yes

Ganley 1 (p = 3 only) 1981 No
Cohen-Ganley 1 (p = 3 only) 1982 No

Coulter-Matthews-Ding-Yuan 2 (p = 3 only) 2006 No
Zha-Kyureghyan-Wang ?? 2008 No
Budaghyan-Helleseth ≈ n/2 2009 Yes

Bierbrauer3 ≈ n/2 2010 No
Bierbrauer4 ≈ n/2 2010 No
Zhou-Pott ≈ n2 2013 Yes
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The known commutative semifields of size pn, p odd

Open problem!

Pott, A.: Almost perfect and planar functions, Designs, Codes, Cryptography
(2016)
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Bivariate constructions
We are interested in special bivariate constructions where K = Fpm × Fpm

and
(x , y) ◦ (u, v) = (f (x , y , u, v), g(x , y , u, v)),

and f , g are homogeneous of degree q + 1 (resp. r + 1) where q, r are
powers of p.

Example (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y) ◦ (u, v) = (xqu + xuq + b(yqv + yvq), x rv + yur + a/b(yv r + y rv)),

where p odd, q = pk , r = pk+m/2, b ∈ Fpm is a non-square, a ∈ F∗pm/2 ,
m/ gcd(k,m) is odd.
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Why this structure?
We are interested in special bivariate constructions where K = Fpm × Fpm

and
(x , y) ◦ (u, v) = (f (x , y , u, v), g(x , y , u, v)),

and f , g are homogeneous of degree q + 1 (resp. r + 1) where q, r are
powers of p.

These semifields have some nice autotopisms! Namely, if L = M = ( a 0
0 a )

then

L(x , y) ◦M(u, v) = (aq+1f (x , y , u, v), ar+1g(x , y , u, v)),

so (N, L,M) with N =
(

aq+1 0
0 ar+1

)
is an autotopism for any a ∈ F×pm .

=⇒ These semifields always have a cyclic subgroup in their autotopism
group of order pm − 1.
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Why this structure?
Another reason is: It turns out many of the known bivariate semifields
semifields "secretly" have this structure!

Example (Zhou-Pott, 2013)

Let K = Fpm × Fpm .

(x , y) ◦ (u, v) = (xqu + uqx + α(yqv + yvq)r , xv + yu)

where q = pk , r = pl , gcd(k,m)/m is odd, and α is a non-square in Fpm .

..is isotopic to...

(x , y) ◦ (u, v) = (xqu + uqx + α(yqv + yvq), x rv + yur ).

And many more (e.g. Dickson, Budaghyan-Helleseth....)!

Lukas Kölsch University of South Florida 25



What can we do with this structure?

1. Systematically search for new semifields that have this structure.

2. Use the nice subgroup in the autotopism group to answer the isotopy
question!
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Isotopy of semifields
Question
How can we decide if different semifields are isotopic or not? Can we
count the (known) semifields up to isotopy?

Example (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y) ◦ (u, v) = (xqu + xuq + b(yqv + yvq), x rv + yur + a/b(yv r + y rv)),

where p odd, q = pk , r = pk+m/2, b ∈ Fpm is a non-square, a ∈ F∗pm/2 ,
m/ gcd(k,m) is odd.

Which choices for q, a, b yield non-isotopic semifields? This is in general
a very hard question!
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Isotopy via the autotopism group

Lemma
Assume S1,S2 are isotopic semifields of order pn. Then Aut(S1) and
Aut(S2) are conjugate in GL(Fpn )3.

Problem: Determining the autotopism group is also very hard!

There is sometimes a way to use the lemma without knowing the
autotopism group - if one can identify a large and nice subgroup first.

Recall our bivariate semifields have a cyclic subgroup of order pm − 1 in
the autotopism group!
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Show that two bivariate semifields S1,S2 are not isotopic - in five simple
steps!

I Let H1 ≤ Aut(S1), H2 ≤ Aut(S2) with |H1| = |H2| = pm − 1 be the
nice cyclic autotopism subgroups.

I Choose a suitable prime p′ and Sylow p′-groups S1 ≤ H1, S2 ≤ H2.

I Prove that S1, S2 are also Sylow p′-groups of Aut(S1),Aut(S2) (key
step!)

I If γ−1 Aut(S1)γ = Aut(S2) then γ−1S1γ is a Sylow subgroup of
Aut(S2). So γ−1S1γ and S2 are conjugate in Aut(S2) (by Sylow’s
theorem)!

I Determine all δ ∈ GL(Fpn )3 such that δ−1S1δ = S2. If all
δ /∈ Aut(S2) then S1, S2 are not isotopic.

In some sense, checking γ−1 Aut(S1)γ = Aut(S2) is reduced to checking
δ−1S1δ = S2.

Lukas Kölsch University of South Florida 29



From this procedure we get the following result:

Theorem (Göloğlu, K., 2022)

If two sufficiently nice bivariate semifields defined over Fpm × Fpm are
isotopic then there exists an isotopism γ = (N, L,M) ∈ ΓL(2,Fpm )3

between them.

This simplifies the isotopy question for all nice bivariate semifields.

Isotopisms of the form γ = (N, L,M) ∈ ΓL(2,Fpm )3 are (comparatively)
easy to determine.
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The known commutative semifields of size pn, p odd

Family Count Proven in Bivariate?
The finite field 1 trivial ≈ Yes

Dickson ≈ n/4 1905 Yes
Albert’s twisted Fields ≈ n/2 1961 ≈ Yes

Ganley 1 (p = 3 only) 1981 No
Cohen-Ganley 1 (p = 3 only) 1982 No

Coulter-Matthews-Ding-Yuan 2 (p = 3 only) 2006 No
Zha-Kyureghyan-Wang ?? 2008 No
Budaghyan-Helleseth ≈ n/2 2009 Yes

Bierbrauer3 ≈ n/2 2010 No
Bierbrauer4 ≈ n/2 2010 No
Zhou-Pott ≈ n2 2013 Yes
Göloğlu-K. ≈ pn/4 2022 Yes
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The known commutative semifields of size pn, p odd

Pott, A.: Almost perfect and planar functions, Designs, Codes, Cryptography
(2016)

This problem is now solved!

This also yields the biggest family of commutative MRD codes!
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The known non-commutative semifields of size pn, p odd

Non-commutative semifields:

I There are more constructions, e.g. via skew-polynomial rings (Petit,
1966), finite geometry (Jha, Johnson, 1990) or secondary
constructions based on commutative semifields

I However, counting (up to isotopy) is much more difficult!

I Several families have ≈ pn/2 non-isotopic elements (Kantor 2003,
Lavrauw 2013, Sheekey 2019)

I The "square-root barrier" was broken in (Göloğlu, K. , 2023+). We
presented a family with ≈ p2n/3 non-isotopic semifields.
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Semifields and symmetric cryptography
To resist differential attacks, a block cipher needs to be nonlinear.

Definition
A function F : Fpn → Fpn is called perfect nonlinear if the equation (in x)

F (x + a)− F (x) = b

has exactly one solution for any b and any non-zero a.

Theorem (Coulter, Henderson, 2007)

If S = (Fn
p,+, ◦) is a commutative semifield, then F (x) = x ◦ x is perfect

nonlinear.

Constructions of new commutative semifields give new perfect nonlinear
functions.
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Current and Future work

Rank-metric codes from semifields:

I Constructions of MRD codes based on new semifields we found.

I Adapting decoding algorithms of (twisted) Gabidulin codes to other
bivariate semifields.

I Check if the new codes are resistant to attacks that broke Gabidulin
based McEliece (e.g. Overbeck’s attack)
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Current and Future work

. . . on the more theoretical side.

Problem (Kantor’s conjecture, 2003)

Prove that the number of non-isotopic semifields of odd order N = pn is
at least exponential in N.

The best current bound is p2n/3, not even linear in N.

Interestingly, in characteristic 2 a family with exponentially many
semifields has been found (Kantor and Williams, 2005).
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Thank you for your attention!

The talk is based on:

Göloğlu, F., Kölsch, L.: An exponential bound on the number of
non-isotopic commutative semifields. Transactions of the American
Mathematical Society, 2022.

Göloğlu, F., Kölsch, L.: Counting the number of non-isotopic Taniguchi
semifields. To appear in Designs, Codes, Cryptography, 2023.

Göloğlu, F., Kölsch, L.: Equivalences of biprojective almost perfect
nonlinear functions. Preprint, 2022.

. . . and ongoing projects with Faruk Göloğlu (Charles Univ. Prague),
Jean-Francois Biasse, Giacomo Micheli (Univ. of South Florida).
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