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Semifields

Definition
A (finite) semifield S = (S,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S,+) is a group.
(S2) For all x , y , z ∈ S,

I x ◦ (y + z) = x ◦ y + x ◦ z,
I (x + y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x , y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.

(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x .

If (S4) does not hold, we call S a pre-semifield.
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Basic properties

If ◦ is associative then S is a finite field (Wedderburn’s Theorem).

Every pre-semifield can easily be turned into a semifield using
Kaplansky’s trick.

The additive group of a semifield (S,+, ◦) is always an elementary
abelian p-group.

We can thus identify the additive group of a semifield S with the additive
group of the finite field Fpn .
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Connections

Every semifield can be used to construct translation planes.

There is a 1-to-1 relation between semifields and rank-metric codes with
certain optimal parameters.

Even constructions of optimal rank-metric codes with other parameters
are often based on semifield constructions.
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Definition (Rank-metric code)

Let Mn,m(Fq) the set of n ×m-matrices over Fq. A linear rank-metric
code is a subspace C ≤ Mn,m(Fq) with minimum distance

d = min
X ,Y∈C,X 6=Y

rk(X − Y ).

The distance used here is the rank metric.

Decoding in the rank metric (seems to be) harder than in the Hamming
metric.
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Constructions of rank-metric codes

What is a good rank-metric code?

Theorem (Singleton-like bound, Delsarte 1978)

Suppose C ≤ Mn,m(Fq) with minimum distance d. Then

|C| ≤ qn(m−d+1).

Rank-metric codes satisfying the bound with equality are called
maximum rank distance (MRD) code.

There are few constructions of MRD codes and even less have efficient
decoding algorithms.

Most constructions of MRD codes are related to semifields.
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Connecting semifields and MRD codes
We have a simple key connection.

Theorem
Let S = (Fn

q,+, ◦) be a semifield. Then the set of right-multiplications

Ry (x) = x ◦ y , C = {Ry : y ∈ Fn
q}

defines a linear MRD code with parameters d = m = n.

Note: The distributivity law (x + y) ◦ z = x ◦ z + y ◦ z implies that Rz is
a linear mapping.

The MRD codes constructed by semifields are square, full rank MRD
codes.
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Two examples of semifields
Example (Albert, 1961)

Let K = Fpn , n > 2, and define ◦ : K → K via

x ◦ y = xy − axqy r ,

where a /∈ Fq−1
pn · Fr−1

pn and q, r are powers of p. Then S = (K ,+, ◦) is a
semifield.

Example (Dickson, 1905)

Let K = Fpm × Fpm with p odd and define ◦ : K × K → K via

(x , y) ◦ (u, v) = (xu + a(yv)q, xv + yu),

where a is a non-square in Fpm and q is a power of p. Then
S = (K ,+, ◦) is a (commutative) semifield.

This is a bivariate construction.
There are many bivariate constructions (Zhou-Pott,
Budaghyan-Helleseth, Dempwolff, Bierbrauer, Knuth, Hughes-Kleinfeld,
Göloğlu-K.,. . . ).
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Bivariate constructions

There are many bivariate semifields, often found using ad hoc
constructions based on informed guesses off computer searches.

Question
Is there a way to unify these bivariate constructions?

This might open the door also for generalizations for "multivariate"
constructions.
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Semifields are spaces of full rank matrices

It is useful to view semifields via their right multiplications Ry = x ◦ y .
By the semifield properties,

S = {Ry : y ∈ S},

is a subspace of full rank matrices (note Ry1+y2 = Ry1 + Ry2).
Dually, every subspace of sqaure full rank matrices satisfying the
Singleton bound defines a semifield.
Often, MRD codes "contain" semifields (in some cases this is necessary
(Sheekey 2019)).
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Cyclic semifields

Definition
Let K be a field. An element T ∈ ΓL(d ,K ) is called irreducible if the
only invariant subspaces of T are {0} and K d .

Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a semifield, called a cyclic
semifield.
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Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
cyclic semifield.

Proof.
We only show that ST has no zero divisors.
Define Ry(x) = x ◦ y. We need to show that Ry has full rank for
y 6= 0.

Lukas Kölsch University of South Florida 12



Proof.
Assume x ◦ y = 0 and y 6= 0. Then there is a k < d such that yk 6= 0 and

k−1∑
i=0

yiT i (x) = −ykT k(x).

So T k(x) ∈ 〈x,T (x), . . . ,T k−1(x)〉, and 〈x,T (x), . . . ,T k−1(x)〉 is a
T -invariant subspace.
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Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
cyclic semifield.

For d = 2 we get bivariate semifields, which are equivalent to the
Hughes-Kleinfeld semifield found in 1960.
Is it possible to extend the cyclic semifield construction to cover more
known semifields?
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Theorem (Sheekey, 2020)

Let L = Fpn be a field, T be an irreducible element in ΓL(d ,Fpn ) with
associated field automorphism σ of order k with fixed field K. Let further
ρ be an automorphism of Fpn with fixed field K ′ ≤ K and η ∈ L chosen
such that

NL : K ′(η)NK : K ′((−1)d(k−1) det(MT )) 6= 1

Fix an L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x) + ηy0T d (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
twisted cyclic semifield.

This construction covers Albert’s semifields as well (for d = 1).
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Observation: For d = 2, this construction covers a bivariate semifield
construction of Bierbrauer (2015) - but not other ones.

Theorem (Sheekey, 2020)

Let L = Fpn be a field, x, y ∈ Ld and T be an irreducible transformation
in ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K. Then the mappings F : Ld → Ld defined by

Fy(x) =
d−1∑
i=0

yiT i (x) + ydT d (x)

are non-singular for any 0 6= y = (y1, . . . , yd−1) if and only if yd = 0 or

NL : K (y0/yd ) 6= (−1)d(k−1)NL : K (det(MT )).
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Corollary

Let L = Fpn be a field, x ∈ Ld and T be an irreducible transformation in
ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K and inverse σ. Then the mappings F : Ld → Ld defined by

Fy1,...,yd−1 (x) =
d−1∑
i=1

yiT i−1(x) + ηT d−1(x) + det(MT )σT−1(x)

for any y1, . . . , yd−1 are non-singular for any η ∈ L with
NL : K (η) 6= (−1)d(k−1).

These are A LOT of non-singular mappings! To construct a twisted cyclic
semifield, Sheekey fixes a transformation T .
IDEA: We do not fix T but change it depending on y1, . . . , yd−1.
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Construction (K.,202?)

Let L = Fpm , V = L2, x, y ∈ L2 with y = ( y0
y1 ) and σ be a field

automorphism of L with fixed field K and σ its inverse. Further, let
Ta ∈ ΓL(2, L), a ∈ L∗ be irreducible transformations satisfying
Ta + Tb = Ta+b for any a, b ∈ L where we set T0 = T−1

0 = 0. Then

x ◦ y = y0x + ηTy1 (x) + det(MTy1
)σT−1

y1
(x)

defines a semifield for any η ∈ L with NL : K (η) 6= 1.

Proof.
Assume x ◦ y = 0. If y1 = 0 then y0x.
If y1 6= 0, then use Sheekey.
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Definition
Let L be a finite field. We call a subset S ⊆ ΓL(2, L) admissible if

S = {Ta : a ∈ L∗} ∪ {0}

satisfies Ta + Tb = Ta+b for any a, b ∈ L and Ta is irreducible for all
a ∈ L∗.

These sets produce semifields via the Construction.
Note: We use subspaces of irreducible transformations in S ⊆ ΓL(2, L) of
dimension n to construct subspaces of invertible mappings of dimension
2n.
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A trivial admissible set

Definition
Let L be a finite field. We call a subset S ⊆ ΓL(2, L) admissible if

S = {Ta : a ∈ L∗} ∪ {0}

satisfies Ta + Tb = Ta+b for any a, b ∈ L and Ta is irreducible for all
a ∈ L∗.

Let T be irreducible. Then set Ta = aT , i.e.

ST = {aT : a ∈ L∗} ∪ {0} ⊆ ΓL(2, L).

This admissible set together with the construction just returns Sheekey’s
twisted cyclic semifields.

Lukas Kölsch University of South Florida 20



2-dimensional irreducible semilinear transformations

We need to find "better", more interesting admissible sets. To do this,
we need to understand irreducible semilinear transformations better. Let
T ∈ ΓL(2, L) with associated automorphism σ. Then write

T = MT xσ, where MT ∈ GL(2, L).

Proposition

The transformation T ∈ ΓL(2, L) with associated
MT =

( 0 α
1 β
)
∈ GL(2, L) and field automorphism σ is irreducible if and

only if Xσ+1 − βX − α = 0 has no solutions in L.

This is a sufficient classification since it is enough to classify up to
GL(2, L)-conjugacy.
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Proposition (Admissible set 1)

Let L = Fpm be a finite field and define Ta ∈ ΓL(2, L) with associated
field automorphism σ via

Ma =
(

0 aα
aτ 0

)

for an arbitrary field automorphism τ . Write σ : x 7→ xpk , τ : x 7→ xpl ,
0 ≤ k, l < m. Then

Sα,σ,τ = {Ta : a ∈ L∗} ∪ {0}

is admissible if and only if either

I α is a nonsquare, and k = 0 or gcd(m, l)/ gcd(m, k, l) is odd; or
I k 6= 0, α is not a (pgcd(m,k,l) + 1)-st power and

gcd(m, l)/ gcd(m, k, l) is even.
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Proposition (Admissible set 2)

Let L be a finite field and define Ta ∈ ΓL(2, L) with associated field
automorphism σ via

Ma =
(

0 aα
aσ2 aσβ

)
.

Then
S = {Ta : a ∈ L∗} ∪ {0}

is admissible if and only if f = Xσ+1 − βX − α ∈ L[X ] has no roots in L.
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Summary

I found a second construction similar to the one I showed earlier, again
based on Sheekey’s lemma.

Then combining the two constructions, together with the two non-trivial
admissible sets, we can generate a ton of semifields.
We cover constructions by: Dickson, Knuth, Bierbrauer, Dempwolff,
Budaghyan-Helleseth, Taniguchi, Zhou-Pott, and construct many new
examples.
In particular: Taniguchi’s family is the largest known family of semifields
in odd characteristic! So our constructions are the most powerful
constructions known so far.
We also show that there is simple and unifying structure for all these
semifields.
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What is to be done.

This is work in progress!

The twisted cyclic semifields can be embedded into MRD codes with
different parameters in a very nice way. Is the same true for our
semifields?
Some MRD codes based on (twisted) cyclic semifields have efficient
decoding. Now that we understand the structure, can we transfer some
of these ideas?
In geometry: Semifields define projective planes. Since these semifields
are constructed in similar ways; can the planes be treated in a unifying
way? Can we find geometric structures (ovals. . . ).
Can we somehow generalize to d > 2 (i.e. start with semilinear
transformations in ΓL(d , L) with d > 2).
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What is to be done.

There is ONE bivariate semifield that is not covered by our constructions:

Theorem (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y)◦(u, v) = (xqu+xuq +b(yqv +yvq), x rv +yur +(a/b)(yv r +y rv)),

where p odd, q = pk for some 1 ≤ k ≤ m − 1, r = pk+m/2, b ∈ Fpm is a
non-square, a ∈ F∗pm/2 , m/ gcd(k,m) is odd.

What is different about this semifield? Are more general constructions
possible?
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Thank you for your attention!
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