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The setting

I When constructing infinite families of combinatorial objects (designs,
difference sets, codes, graphs,. . . ), we often want to count the
(asymptotic) size of the family.

I I stumbled on this question via this family of planar functions

Example (Göloğlu, K., 2021)

Let F : Fpm × Fpm → Fpm × Fpm defined via

F (x , y) = (xq+1 + byq+1, x ry + (a/b)xy r ),

where q = pk ,r = pk+m/2, m even, gcd(k,m) = 1, a ∈ F×pm/2 , b a
non-square in Fpm . Then F is a planar function.
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The setting
Example (Göloğlu, K., 2021)

Let F : Fpm × Fpm → Fpm × Fpm be defined via

F (x , y) = (xq+1 + byq+1, x ry + (a/b)xy r ),

where q = pk ,r = pk+m/2, m even, gcd(k,m) = 1, a ∈ F×pm/2 , b a
non-square in Fpm . Then F is a planar function.

Definition (Planar function)

Let F : Fn
p → Fn

p be function. We call F planar, if x 7→ F (x + a)− F (x)
is a bijection on Fn

p for all non-zero a ∈ Fn
p.

Planar functions can be used to construct non-desarguesian projective
planes, difference sets, semifields, rank-metric codes with optimal
parameters etc.Lukas Kölsch University of South Florida 3



The setting

Question
Which choices of a, b (and k) lead to different planar functions? In other
words: How big is our family?

When do we consider planar functions as different?

Definition (Equivalence for planar functions)

Let F : Fn
p → Fn

p be a planar function. If L1, L2 ∈ GL(n, p) then
G = L1 ◦ F ◦ L2 is also planar. We call F and G equivalent.

If we want to check if F ,G are equivalent, we need to check if
L1, L2 ∈ GL(n, p) exist s.t. G = L1 ◦ F ◦ L2.
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The setting

Definition (Automorphism group for planar functions)

Let F : Fn
p → Fn

p be a planar function. We set

Aut(F ) = {(L1, L2) ∈ GL(n, p)2 : F = L1 ◦ F ◦ L2} ≤ GL(n, p)× GL(n, p).

Lemma
Let F ,G : Fn

p → Fn
p be equivalent planar functions. Then there exists

g ∈ GL(n, p)× GL(n, p) s.t.

g−1 Aut(G)g = Aut(F ).

Equivalent functions have conjugate automorphism groups.
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Lemma
Let F ,G : Fn

p → Fn
p be equivalent planar functions. Then there exists

g ∈ GL(n, p)× GL(n, p) s.t.

g−1 Aut(G)g = Aut(F ).

This is very easy to see and generalizes to basically all notions of
equivalence on combinatorial objects we know.
General setup for combinatorial objects:

I We have an equivalence relation on our combinatorial object.

I We define an automorphism group in a natural way that is
embedded in an ambient group.

I The lemma above will hold (group action exercise for undergrads)
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Object Ambient group

Graphs Sn

Designs Sn

Linear Hamming codes subgroup of ΓL(n, q)
Linear Rank-metric codes ΓL(n, q)

Spreads ΓL(n, q)× ΓL(n, q)
...

...
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Strategy

Lemma
Let F ,G be equivalent combinatorial objects. Then there exists g in the
ambient group s.t.

g−1 Aut(G)g = Aut(F ).

I Determining the entire Automorphism group is usually as hard as
determining if two objects are isomorphic or not.

I If we can explicitly find easily recognizable subgroups of Aut(F ), we
can still use this lemma.

I Since we try to determine isomorphy of members of the same
infinity family, we suspect that automorphism groups have similar
structures (often even isomorphic).
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Back to the starting example

Example (Göloğlu, K., 2021)

Let Fa,b,k : Fpm × Fpm → Fpm × Fpm defined via

Fa,b,k(x , y) = (xq+1 + byq+1, x ry + (a/b)xy r ),

where q = pk ,r = pk+m/2, m even, gcd(k,m) = 1, a ∈ F×pm/2 , b a
non-square in Fpm . Then Fa,b,k is a planar function.

We try to find some simple automorphisms, i.e. linear mappings L1, L2

s.t. Fa,b,k = L1 ◦ Fa,b,k ◦ L2.

Identify: L1 =
(

1/zq+1 0
0 1/z r+1

)
, L2 = ( z 0

0 z ) for z ∈ F∗pm .
So Aut(Fa,b,k) contains a cyclic subgroup H of size pm − 1, no matter
the choice of a, b, k.
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Back to the starting example

So Aut(Fa,b,k) contains a cyclic subgroup H of size pm − 1, no matter
the choice of a, b, k.

Proof idea:

I Assume Fa,b,k ,Fa′,b′,k′ are equivalent. Then Aut(Fa,b,k) is conjugate
to Aut(Fa′,b′,k′ ).

I Show that then the cyclic subgroups we just identified have to be
conjugate as well (use Sylow groups)

I Try to arrive at a contradiction (or find an equivalence).

In detail...
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Show that two functions F1,F2 in the family are not equivalent - in five
simple steps!

I Let H1 ≤ Aut(F1), H2 ≤ Aut(F2) with |H1| = |H2| = pm − 1 be the
nice cyclic automorphism subgroups.

I Choose a suitable prime p′ and Sylow p′-groups S1 ≤ H1, S2 ≤ H2.
I Prove that S1, S2 are also Sylow p′-groups of Aut(F1),Aut(F2) (key

step!)
I If γ−1 Aut(F1)γ = Aut(F2) then γ−1S1γ is a Sylow subgroup of

Aut(F2). So γ−1S1γ and S2 are conjugate in Aut(F2) (by Sylow’s
theorem)!

I Determine all δ ∈ GL(2m, p)2 such that δ−1S1δ = S2. If all
δ /∈ Aut(F2) then F1, F2 are not equivalent

In some sense, checking γ−1 Aut(F1)γ = Aut(F2) is reduced to checking
δ−1S1δ = S2.
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Last step:
Determine all δ ∈ GL(n, p)2 such that δ−1S1δ = S2 and check if
δ ∈ Aut(F2).

Recall S1 ≤ H1, S2 ≤ H2 and H1,H2 consist of mappings (L1, L2) where

L2 = ( z 0
0 z ) and L1 =

(
1/zq+1 0

0 1/z r+1

)
.

Some calculations show that one can reduce everything to the case where
the value of q, r for the two functions coincide, i.e. S1 = S2.

So: Everything is reduced to finding autotopisms δ that satisfy
δ−1S1δ = S1, i.e. δ ∈ NGL(2m,p)2 (S1).

A straight-forward calculation shows NGL(2m,p)2 (S1) = ΓL(2, pm)2.
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Reflections on the technique

This technique used the existence of a special subgroup in the
automorphism group to prove that possible isomorphisms have to be
contained in ΓL(2, pm)2.

It is thus much more general and can be applied to all functions of the
form

F (x , y) = (f (x , y), g(x , y)),

where f , g are homogeneous polynomials.
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Results

Example (Göloğlu, K., 2023)

Let Fa,b,k : Fpm × Fpm → Fpm × Fpm defined via

Fa,b,k(x , y) = (xq+1 + byq+1, x ry + (a/b)xy r ),

where q = pk ,r = pk+m/2, m even, gcd(k,m) = 1, a ∈ F×pm/2 , b a
non-square in Fpm . Then Fa,b,k is a planar function.
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Theorem (Göloğlu, K., 2023)

Let Fk,a,b, Fk′,a′,b′ be planar functions from the family on Fpm × Fpm .

(i) Fk,a,b is equivalent to Fm−k,a′,b for a′ = bQ+1/a and arbitrary q.

(ii) Fk,a,b is equivalent to Fk,a′,b′ for arbitrary q, b, b′, a and a suitable
choice for a′.

(iii) There are at most 2m different a′ such that Fq,a,b is equivalent to
Fq,a′b.

(iv) No other equivalences exist.

Theorem (Göloğlu, K., 2023)

The number of inequivalent members in the family on Fpm × Fpm is
around pm/2.
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Theorem (Göloğlu, K., 2023)

The number of inequivalent members in the family is around pm/2 on
fields Fpm × Fpm .

The previous best bound for the number of inequivalent planar functions
was quadratic in m (Zhou,Pott, 2011).
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Other examples of this technique

Definition
A (finite) semifield S = (S,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S,+) is a group.
(S2) For all x , y , z ∈ S,

I x ◦ (y + z) = x ◦ y + x ◦ z,
I (x + y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x , y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.
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Basic properties

If ◦ is associative then S is essentially a finite field (Wedderburn’s
Theorem).

The additive group of a semifield (S,+, ◦) is always an elementary
abelian p-group.

We can thus identify the additive group of a semifield S with the additive
group of the vector space Fn

p.

Semifields are in one to one correlation to translation planes whose duals
are also translation planes, as well as certain maximum rank distance
codes.
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Definition (Isotopy)

Two semifields S1 = (Fn
p,+, ◦1) and S2 = (Fn

p,+, ◦2) are isotopic if there
exist Fp-linear bijections L,M and N of Fpn satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N, L,M) is called an isotopism between S1 and S2.

Definition (Autotopism and the Autotopism group)

The autotopism group Aut(S) of a semifield S = (Fn
p,+, ◦) is defined by

Aut(S) = {(N, L,M) ∈ GL(Fpn )3 : N(x ◦ y) = L(x) ◦M(y)}.

Two semifields are isotopic iff the associated rank-metric codes are
equivalent iff the corresponding planes are isomorphic.
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A family of semifields by Taniguchi (2019)
The Taniguchi semifields are defined on Fn

p
∼= Fpm × Fpm with n = 2m via

the semifield multiplication

(x , y)∗(u, v) = ((xqu+αxuq)q2
−a(xqv−αuqy)q−b(yqv+αyvq), xv+yu),

where

I q = pk for some 1 ≤ k ≤ m − 1,

I −α is not a (q − 1)-st power, and

I the projective polynomial Pq,a,b(x) = xq+1 + ax + b has no roots in
Fpm .

Question
Which choices of α, a, b, k yield non-isotopic semifields?
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(x , y)∗(u, v) = ((xqu+αxuq)q2
−a(xqv−αuqy)q−b(yqv+αyvq), xv+yu)

We try to apply out technique: Find autotopisms N(x ∗ y) = L(x)∗M(y).

Equivalent to:

(x , y)◦(u, v) = (xqu+αq2
xuq−a(xvq−αquyq)−b(yqv+αyvq), xvq2

+yq2
u).

N =
(
zq+1 0
0 zq2+1

)
, L = M =

(
z 0
0 z

)
yields an autotopism. So we have again a cyclic group of autotopisms of
size pm − 1.
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Counting Taniguchi semifields

We have the exact same setup as before: A cyclic subgroup of the
autotopism group of size pm − 1.

Same techniques apply.
We achieve precise conditions on α, a, b, k when two Taniguchi semifields
are isotopic.

Theorem (Göloğlu, K., 2024)

There are around pm+s non-isotopic Taniguchi semifields of order p2m

where s is the largest divisor of m with 2s 6= m.

Best currently known bound for the number of odd order semifields
(translation planes whose duals are translation planes; full rank MRD
codes).
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Some more examples and notes

We also applied the techniques to APN functions and counted the
number of inequivalent functions is several infinite families.

The technique is not new per se — several examples can be found in the
literature, e.g. (Biliotti, Jha, Johnson, 1999), (Dempwolff, 2015),
(Yoshiara, 2013), who used similar ideas for different combinatorial
objects.

I did not invent this technique.

Consider these ideas if you want to count the asymptotic size of an
infinite family of objects.
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Thank you for your attention!
The talk is based on three papers, all joint work with Faruk Göloğlu:

"An exponential bound on the number of non-isotopic commutative
semifields." Transactions of the American Mathematical Society (2023)

"Counting the number of non-isotopic Taniguchi semifields." Designs,
Codes and Cryptography (2024)

"Equivalences of biprojective almost perfect nonlinear functions." To
appear in Combinatorial Theory.
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