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Semifields

Definition
A (finite) semifield S = (S,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S,+) is a group.
(S2) For all x , y , z ∈ S,

I x ◦ (y + z) = x ◦ y + x ◦ z,
I (x + y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x , y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.

(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x .

If (S4) does not hold, we call S a pre-semifield.
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Basic properties

If ◦ is associative then S is a finite field (Wedderburn’s Theorem).

Every pre-semifield can easily be turned into a semifield using
Kaplansky’s trick.

The additive group of a semifield (S,+, ◦) is always an elementary
abelian p-group.

We can thus identify the additive group of a semifield S with the additive
group of the finite field Fpn .
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Connections

Every semifield S can be used to construct spreads via the vector spaces

Vy = {(x , x ◦ y) : x ∈ S} for y ∈ S

and
V ′ = {(0, y) : y ∈ S}.

Using the André-Bruck-Bose construction, we get a translation plane
from such a semifield spread.

In fact, semifield planes are exactly translation planes whose duals are
again translation planes.
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Connections

There is a 1-to-1 relation between semifields and rank-metric codes with
certain optimal parameters.

Even constructions of optimal rank-metric codes with other parameters
are often based on semifield constructions.
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Two examples of semifields
Example (Albert, 1961)

Let K = Fpn , n > 2, and define ◦ : K → K via

x ◦ y = xy − axqy r ,

where a /∈ Fq−1
pn · Fr−1

pn and q, r are powers of p. Then S = (K ,+, ◦) is a
semifield.

Example (Dickson, 1905)

Let K = Fpm × Fpm with p odd and define ◦ : K × K → K via

(x , y) ◦ (u, v) = (xu + a(yv)q, xv + yu),

where a is a non-square in Fpm and q is a power of p. Then
S = (K ,+, ◦) is a (commutative) semifield.

This is a bivariate construction.
There are many bivariate constructions (Zhou-Pott,
Budaghyan-Helleseth, Dempwolff, Bierbrauer, Knuth, Hughes-Kleinfeld,
Göloğlu-K.,. . . ).
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Bivariate constructions

There are many bivariate semifields, often found using ad hoc
constructions based on informed guesses off computer searches.

Question
Is there a way to unify these bivariate constructions?

This might open the door also for generalizations for "multivariate"
constructions.
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Semifields are spaces of full rank matrices

It is useful to view semifields via their right multiplications Ry = x ◦ y .
By the semifield properties,

S = {Ry : y ∈ S},

is a subspace of full rank matrices (note Ry1+y2 = Ry1 + Ry2).
Dually, every subspace of square full rank matrices satisfying the
Singleton bound defines a semifield.
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Definition
Let L be a field. An element T ∈ ΓL(d , L) is called irreducible if the only
invariant subspaces of T are {0} and Ld .

NOTATION: Let T ∈ ΓL(2, L) with associated automorphism σ. Then
write

T = MT xσ, where MT ∈ GL(2, L).

Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a semifield, called a cyclic
semifield.
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Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
cyclic semifield.

Proof.
We only show that ST has no zero divisors.
Define Ry(x) = x ◦ y. We need to show that Ry has full rank for
y 6= 0.
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Proof.
Assume x ◦ y = 0 and y 6= 0. Then there is a k < d such that yk 6= 0 and

k−1∑
i=0

yiT i (x) = −ykT k(x).

So T k(x) ∈ 〈x,T (x), . . . ,T k−1(x)〉, and 〈x,T (x), . . . ,T k−1(x)〉 is a
T -invariant subspace.
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Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
cyclic semifield.

This construction is equivalent to a construction using skew-polynomial
rings.
For d = 2 we get bivariate semifields, which are equivalent to the
Hughes-Kleinfeld semifields found in 1960.
Is it possible to extend the cyclic semifield construction to cover more
known semifields?
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Theorem (Sheekey, 2020)

Let L = Fpn be a field, T be an irreducible element in ΓL(d ,Fpn ) with
associated field automorphism σ of order k with fixed field K. Let further
ρ be an automorphism of Fpn with fixed field K ′ ≤ K and η ∈ L chosen
such that

NL : K ′(η)NK : K ′((−1)d(k−1) det(MT )) 6= 1

Fix an L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x) + ηyρ0T d (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
twisted cyclic semifield.

This construction covers Albert’s semifields as well (for d = 1).
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Observation: For d = 2, this construction covers a bivariate semifield
construction of Bierbrauer (2015) - but not other ones.

Theorem (Sheekey, 2020)

Let L = Fpn be a field, x, y ∈ Ld and T be an irreducible transformation
in ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K. Then the mappings F : Ld → Ld defined by

Fy(x) =
d−1∑
i=0

yiT i (x) + ydT d (x)

are non-singular for any 0 6= y = (y1, . . . , yd−1) if yd = 0 or

NL : K (y0/yd ) 6= (−1)d(k−1)NL : K (det(MT )).
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Corollary

Let L = Fpn be a field, x ∈ Ld and T be an irreducible transformation in
ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K and inverse σ. Then the mappings F : Ld → Ld defined by

Fy1,...,yd−1(x) =
d−1∑
i=1

yiT i−1(x) + ηT d−1(x) + det(MT )σT−1(x)

for any y1, . . . , yd−1 are non-singular for any η ∈ L with
NL : K (η) 6= (−1)d(k−1).

These are A LOT of non-singular mappings! To construct a twisted cyclic
semifield, Sheekey fixes a transformation T .
IDEA: We do not fix T but change it depending on y1, . . . , yd−1.

Lukas Kölsch University of South Florida 15



Construction (Construction 1)

Let L = Fpm , V = L2, x, y ∈ L2 with y = ( y0
y1 ) and σ be a field

automorphism of L with fixed field K and σ its inverse. Further, let
Ta ∈ ΓL(2, L), a ∈ L∗ be irreducible transformations satisfying
Ta + Tb = Ta+b for any a, b ∈ L where we set T0 = T−10 = 0. Then

x ◦ y = y0x + ηTy1(x) + det(MTy1
)σT−1y1 (x)

defines a presemifield for any η ∈ L with NL : K (η) 6= 1.

Proof.
Assume x ◦ y = 0. If y1 = 0 then y0x.
If y1 6= 0, then use Sheekey.
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A slight variation:

Construction (Construction 2)

Let V = L2, x, y ∈ V with y = ( y0
y1 ). Let further σ be a field

automorphisms of L with fixed field K. Further, let Ta ∈ ΓL(2, L), a ∈ L∗

be irreducible transformations satisfying Ta + Tb = Ta+b for any
a, b ∈ L, where we set T0 = 0. Then

x ◦ y = y0x + Ty1(x)

defines a presemifield.
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Definition
We call a mapping T : L→ ΓL(2, L) ∪ {0} admissible if

1. T (0) = 0,

2. T (a) + T (b) = T (a + b) for any a, b ∈ L,

3. T (a) ∈ ΓL(2, L) is irreducible for all a ∈ L∗.

These sets produce semifields via the Construction.
Note: We use subspaces of irreducible transformations in S ⊆ ΓL(2, L) of
dimension n to construct subspaces of invertible mappings of dimension
2n.
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A trivial admissible mappings

Definition
We call a mapping T : L→ ΓL(2, L) ∪ {0} admissible if

1. T (0) = 0,

2. T (a) + T (b) = T (a + b) for any a, b ∈ L,

3. T (a) ∈ ΓL(2, L) is irreducible for all a ∈ L∗.

Fix irreducible T ∈ ΓL(2, L). Then set T (a) = aT .
This admissible mapping together with the construction just returns
Sheekey’s twisted cyclic semifields.
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2-dimensional irreducible semilinear transformations

We need to find "better", more interesting admissible mappings. To do
this, we need to understand irreducible semilinear transformations better.

Proposition

The transformation T ∈ ΓL(2, L) with associated
MT =

( 0 α
1 β
)
∈ GL(2, L) and field automorphism σ is irreducible if and

only if Xσ+1 − βX − α = 0 has no solutions in L.

This is a sufficient classification since it is enough to classify up to
GL(2, L)-conjugacy.
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Proposition (Admissible mapping 1)

Define T : L→ ΓL(2, L) ∪ {0} such that T (0) = 0 and for a 6= 0 define
T (a) ∈ ΓL(2, L) with associated field automorphism σ and associated
matrix Ma ∈ GL(2, L) via

Ma =
(

0 aα
aτ 0

)

for an arbitrary, nontrivial field automorphism τ . Write σ : x 7→ xpk ,
τ : x 7→ xpl , 0 ≤ k, l < m. Then T is admissible if and only if either

I α is a non-square; and k = 0 or gcd(m, l)/ gcd(m, k, l) is odd; or

I k 6= 0, α is not a (pgcd(m,k,l) + 1)-st power and
gcd(m, l)/ gcd(m, k, l) is even.
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Proposition (Admissible set 2)

Define T : L→ ΓL(2, L) ∪ {0} such that T (0) = 0 and for all a 6= 0 let
T (a) ∈ ΓL(2, L) with associated field automorphism σ via

Ma =
(

0 aα
aσ2 aσβ

)
.

Then T is admissible if and only if P(X ) = Xσ+1 − βX − α ∈ L[X ] has
no roots in L.
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Recreating known semifields

Family Construction Admissible Mapping Notes
(Generalized) Dickson Construction 2 Admissible Mapping 1 —

Knuth I Construction 2 Admissible Mapping 2 —
Knuth II,III,IV, Construction 2 trivial —
Hughes-Kleinfeld

Bierbrauer, Construction 1 trivial Contains comm. SF
Budaghyan-Helleseth

Dempwolff Construction 1 trivial —
Zhou-Pott Construction 1 Admissible Mapping 1 —
Taniguchi Construction 1 Admissible Mapping 2 Largest known construction

(Twisted) cyclic semifields Constructions 1, 2 trivial only covers d = 2

Table: Known infinite families of semifields of order p2m and how to recreate
them
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What does "recreating semifields" mean?— Isotopy

We can find equivalent semifields using our constructions.

Definition (Isotopy)

Two (pre-)semifields S1 = (Fn
p,+, ◦1) and S2 = (Fn

p,+, ◦2) are isotopic if
there exist Fp-linear bijections L,M and N of Fpn satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N, L,M) is called an isotopism between S1 and S2.
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What does "recreating semifields" mean? — Knuth orbit

If (Fn
p,+, ◦) is a semifield, then so is its dual (Fn

p,+, ∗) where

x ∗ y := y ◦ x .

Moreover, if S is a semifield, then we can take the dual of its spread.
This spread will again define a semifield St , called the transpose of S.

Taking the dual and taking the transpose induce an S3-action on the set
of semifields, i.e., one semifield will give 6 semifields by taking duals and
transposes.

This is called the Knuth orbit of a semifield.

Semifields in the same Knuth orbit are in general not isotopic.
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Some new semifields

We also find new semifields using Construction 1, Admissible mapping 1.
They are equivalent to a SF on L2 with multiplication:(

x0
x1

)
◦

(
y0
y1

)
=
(
x1yσ1 − ηxσ1 y1 + α(x0yσ0 − ηxσ0 y0)

xτ0 y1 + x1yτ0

)
.

for suitably chosen η, α ∈ L, σ, τ ∈ Gal(L). For η = −1 we get the
commutative Zhou-Pott semifields.
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Theorem
Let S1 = (L2,+, ◦1) = Sσ,τ,α1,η1 and S2 = (L2,+, ◦2) = Sσ2,τ2,α2,η2 be
two semifields defined on L2 with σ : x 7→ xpk , τ : x 7→ xpl , k, l < m/2
and k 6= l . Let K be the fixed field of σ. S1 and S2 are isotopic if and
only if σ2 = σ, τ2 = τ , and there exists a field automorphism ρ of L such
that

I NL : K (η1)ρ = NL : K (η2), and

I αρ1
α2
∈ Lσ+1Lτ−1.

In particular, if NL : K (η) 6= NL : K (−1) our SF are not isotopic to
Zhou-Pott semifields.
Proof uses some group theoretic ideas developed in previous papers.
Using nuclei arguments, one can show that the new family of semifields
contains SF not contained in any known family of semifields.
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Summary

Combining the two constructions, together with the two non-trivial
admissible mappings, we can generate a ton of semifields.

We cover constructions by: Dickson, Knuth, Bierbrauer, Dempwolff,
Budaghyan-Helleseth, Taniguchi, Zhou-Pott, and construct many new
examples.
In particular: Taniguchi’s family is the largest known family of semifields
in odd characteristic! So our constructions are the most powerful
constructions known so far.
We also show that there is simple and unifying structure for all these
semifields.

Lukas Kölsch University of South Florida 28



Summary

Combining the two constructions, together with the two non-trivial
admissible mappings, we can generate a ton of semifields.
We cover constructions by: Dickson, Knuth, Bierbrauer, Dempwolff,
Budaghyan-Helleseth, Taniguchi, Zhou-Pott, and construct many new
examples.

In particular: Taniguchi’s family is the largest known family of semifields
in odd characteristic! So our constructions are the most powerful
constructions known so far.
We also show that there is simple and unifying structure for all these
semifields.

Lukas Kölsch University of South Florida 28



Summary

Combining the two constructions, together with the two non-trivial
admissible mappings, we can generate a ton of semifields.
We cover constructions by: Dickson, Knuth, Bierbrauer, Dempwolff,
Budaghyan-Helleseth, Taniguchi, Zhou-Pott, and construct many new
examples.
In particular: Taniguchi’s family is the largest known family of semifields
in odd characteristic! So our constructions are the most powerful
constructions known so far.

We also show that there is simple and unifying structure for all these
semifields.

Lukas Kölsch University of South Florida 28



Summary

Combining the two constructions, together with the two non-trivial
admissible mappings, we can generate a ton of semifields.
We cover constructions by: Dickson, Knuth, Bierbrauer, Dempwolff,
Budaghyan-Helleseth, Taniguchi, Zhou-Pott, and construct many new
examples.
In particular: Taniguchi’s family is the largest known family of semifields
in odd characteristic! So our constructions are the most powerful
constructions known so far.
We also show that there is simple and unifying structure for all these
semifields.

Lukas Kölsch University of South Florida 28



What is to be done.

The twisted cyclic semifields can be embedded into MRD codes with
different parameters in a very nice way. Is the same true for our
semifields?

Some MRD codes based on (twisted) cyclic semifields have efficient
decoding. Now that we understand the structure, can we transfer some
of these ideas?
In geometry: Semifields define projective planes. Since these semifields
are constructed in similar ways; can the planes be treated in a unifying
way? Can we find geometric structures (ovals,. . . ).
Can we somehow generalize to d > 2 (i.e. start with semilinear
transformations in ΓL(d , L) with d > 2).
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What is to be done.

There are bivariate semifields that are not covered by our constructions:

Theorem (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y)◦(u, v) = (xqu+xuq +b(yqv +yvq), x rv +yur +(a/b)(yv r +y rv)),

where p odd, q = pk for some 1 ≤ k ≤ m − 1, r = pk+m/2, b ∈ Fpm is a
non-square, a ∈ F∗pm/2 , m/ gcd(k,m) is odd.

What is different about these semifields? Are more general constructions
possible?
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Thank you for your attention!
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