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Semifields

Definition
A (finite) semifield S = (S,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S,+) is a group.
(S2) For all x , y , z ∈ S,

I x ◦ (y + z) = x ◦ y + x ◦ z,
I (x + y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x , y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.

(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x .

If (S4) does not hold, we call S a pre-semifield.
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Basic properties

If ◦ is associative then S is a finite field (Wedderburn’s Theorem).

Every pre-semifield can easily be turned into a semifield using Kaplansky’s
trick. The new semifield is equivalent to the previous pre-semifield.

The additive group of a semifield (S,+, ◦) is always an elementary
abelian p-group.

We can thus identify the additive group of a semifield S with (Fpn ,+)
and just need to define a new multiplication.
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Connections

Every semifield S can be used to construct spreads via the vector spaces

Vy = {(x , x ◦ y) : x ∈ S} for y ∈ S

and
V ′ = {(0, y) : y ∈ S}.

Using the André-Bruck-Bose construction, we get a translation plane
from such a semifield spread.

In fact, semifield planes are exactly translation planes whose duals are
again translation planes.
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Explicit construction of affine planes using semifields

Exactly the same construction as the classical construction using a field
— substituting field multiplication with semifield multiplication.

Affine points: (a, b) ∈ S2.

Affine lines: la,b = {(x , a ◦ x + b) : x ∈ S}, lc = {(x , c) : x ∈ S}

A projective plane can then be constructed by "completing" the affine
plane with a line at infinity.
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Codes
Classical coding theory is largely concerned with linear codes over a finite
field.

Definition (Code)

A linear [n, k, d ]-code C ≤ Fn
q is a k-dimensional subspace of Fn

q such that

d = min
x ,y∈C,x 6=y

#{j ∈ {1, . . . , n} : xj 6= yj}.

The distance used is the Hamming distance. Classical problems:

I Find codes that are "optimal" (achieve maximal d with fixed n, k)

I Find for a given point x ∈ Fn
q the point in C closest to x . (decoding

problem)

Lukas Kölsch University of South Florida 6



A new approach

We can use non-classical coding theory like rank-metric codes.

Definition (Rank-metric code)

Let Mn,m(Fq) the set of n ×m-matrices over Fq. A linear rank-metric
code is a subspace C ≤ Mn,m(Fq) with minimum distance

d = min
X ,Y∈C,X 6=Y

rk(X − Y ).

The distance used here is the rank metric.

Decoding in the rank metric (seems to be) harder than in the Hamming
metric. Possible advantages in cryptosystems!
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Constructions of rank-metric codes

What is a good rank-metric code?

Theorem (Singleton-like bound, Delsarte 1978)

Suppose C ≤ Mn,m(Fq) with minimum distance d. Then

|C| ≤ qn(m−d+1).

Rank-metric codes satisfying the bound with equality are called
maximum rank distance (MRD) code.

There are few constructions of MRD codes and even less have efficient
decoding algorithms.
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Connecting semifields and MRD codes
We have a simple key connection.

Theorem
Let S = (Fn

p,+, ◦) be a semifield. Then the set of right-multiplications

Ry (x) = x ◦ y , C = {Ry : y ∈ Fn
p}

defines a linear MRD code with parameters d = m = n.

Note: The distributivity law (x + y) ◦ z = x ◦ z + y ◦ z implies that Ry is
a linear mapping.

The MRD codes constructed by semifields are square, full rank MRD
codes.
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Connecting semifields and MRD codes

Even more:

Theorem (de la Cruz, Kiermaier, Wassermann, Willems, 2015)

There is a 1-1 correspondence between finite semifields and linear, square
full rank MRD codes.

And even more: Many known constructions of MRD codes with other
arbitrary parameters are related to semifield constructions.
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Connections of commutative semifields to difference sets
and planar functions

Commutative semifields can be used to construct skew Hadamard
difference sets and Paley type partial difference sets (Ding, Yuan, 2006),
(Weng, Qiu, Wang, Xiang, 2007).

In particular: Counterexample to the old conjecture that the Paley
difference sets are the only examples of skew Hadamard difference sets in
abelian groups.

Idea: Replace the set of squares with the set of "semifield squares"
{x ◦ x : x ∈ S} for a commutative semifield S.

Commutative semifields also lead to constructions of planar functions
that are interesting in symmetric cryptography.

Lukas Kölsch University of South Florida 11



Definition (Isotopy)

Two semifields S1 = (Fn
p,+, ◦1) and S2 = (Fn

p,+, ◦2) are isotopic if there
exist Fp-linear bijections L,M and N of Fn

p satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N, L,M) is called an isotopism between S1 and S2.

Definition (Autotopism and the Autotopism group)

The autotopism group Aut(S) of a semifield S = (Fn
p,+, ◦) is defined by

Aut(S) = {(N, L,M) ∈ GL(Fpn )3 : N(x ◦ y) = L(x) ◦M(y)}.

Two semifields are isotopic ⇔ the associated rank-metric codes are
equivalent ⇔ the associated planes are isomorphic.
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Kantor’s conjecture

Problem (Kantor’s conjecture, 2003)

Prove that the number of non-isotopic semifields of odd order N = pn is
not bounded by a polynomial in N.

The best current bound is p2n/3 (Gologlu, K., 2023).

Interestingly, in characteristic 2 a family with exponentially many
semifields has been found (Kantor and Williams, 2005).

Equivalently: How many inequivalent square full rank MRD codes are
there? How many non-isomorphic semifield planes exist?
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Kantor’s conjecture

Problem (Kantor’s conjecture, 2003)

Prove that the number of non-isotopic semifields of odd order N = pn is
at least exponential in N.

We need:

1. A new, general construction of semifields.

2. A technique to prove non-isotopy between semifields in this family.
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An example of a semifield

Example (Dickson, 1905)

Let K = Fpm × Fpm with p odd and define ◦ : K × K → K via

(x , y) ◦ (u, v) = (xu + a(yv)q, xv + yu),

where a is a non-square in Fpm and q is a power of p. Then
S = (K ,+, ◦) is a (commutative) semifield.

This is a bivariate construction.
There are many bivariate constructions (Zhou-Pott,
Budaghyan-Helleseth, Dempwolff, Bierbrauer, Knuth, Hughes-Kleinfeld,
Göloğlu-K.,. . . ).
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Biprojective constructions
We are interested in special biprojective constructions where
K = Fpm × Fpm and

(x , y) ◦ (u, v) = (f (x , y , u, v), g(x , y , u, v)),

and f , g are homogeneous of degree q + 1 (resp. r + 1) where q, r are
powers of p.

Example (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y)◦ (u, v) = (xqu+xuq +B(yqv +yvq), x rv +yur +A/B(yv r +y rv)),

where p odd, q = pk , r = pk+m/2, B ∈ Fpm is a non-square, A ∈ F∗pm/2 ,
m/ gcd(k,m) is odd.
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Why this structure?
We are interested in special bivariate constructions where K = Fpm × Fpm

and
(x , y) ◦ (u, v) = (f (x , y , u, v), g(x , y , u, v)),

and f , g are homogeneous of degree q + 1 (resp. r + 1) where q, r are
powers of p.

These semifields have some nice autotopisms! Namely, if L = M = ( a 0
0 a )

then

L(x , y) ◦M(u, v) = (aq+1f (x , y , u, v), ar+1g(x , y , u, v)),

so (N, L,M) with N =
(

aq+1 0
0 ar+1

)
is an autotopism for any a ∈ F×pm .

=⇒ These semifields always have a cyclic subgroup in their autotopism
group of order pm − 1.
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Why this structure?
Another reason is: It turns out many of the known bivariate semifields
semifields "secretly" have this structure!

Example (Zhou-Pott, 2013)

Let K = Fpm × Fpm .

(x , y) ◦ (u, v) = (xqu + uqx + α(yqv + yvq)r , xv + yu)

where q = pk , r = pl , gcd(k,m)/m is odd, and α is a non-square in Fpm .

..is isotopic to...

(x , y) ◦ (u, v) = (xqu + uqx + α(yqv + yvq), x rv + yur ).

And many more (e.g. Dickson, Budaghyan-Helleseth....)!
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Isotopy of semifields
Question
How can we decide if different semifields are isotopic or not? Can we
count the (known) semifields up to isotopy?

Example (Göloglu, K., 2022)

Let K = Fpm × Fpm , m even and set

(x , y)◦ (u, v) = (xqu+xuq +B(yqv +yvq), x rv +yur +A/B(yv r +y rv)),

where p odd, q = pk , r = pk+m/2, B ∈ Fpm is a non-square, A ∈ F∗pm/2 ,
m/ gcd(k,m) is odd.

Which choices for q,A,B yield non-isotopic semifields? This is in general
a very hard question!
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Isotopy via the autotopism group

Lemma
Assume S1,S2 are isotopic semifields of order pn. Then Aut(S1) and
Aut(S2) are conjugate in GL(Fpn )3.

Problem: Determining the autotopism group is also very hard!

There is sometimes a way to use the lemma without knowing the
autotopism group - if one can identify a large and nice subgroup first.

Recall our bivariate semifields have a cyclic subgroup of order pm − 1 in
the autotopism group!
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Show that two bivariate semifields S1,S2 are not isotopic - in five simple
steps!

I Let H1 ≤ Aut(S1), H2 ≤ Aut(S2) with |H1| = |H2| = pm − 1 be the
nice cyclic autotopism subgroups.

I Choose a suitable prime p′ and Sylow p′-groups S1 ≤ H1, S2 ≤ H2

I Prove that S1, S2 are also Sylow p′-groups of Aut(S1),Aut(S2) (key
step!)

I If γ−1 Aut(S1)γ = Aut(S2) then γ−1S1γ is a Sylow subgroup of
Aut(S2). So γ−1S1γ and S2 are conjugate in Aut(S2) (by Sylow’s
theorem)!

I Determine all δ ∈ GL(Fpn )3 such that δ−1S1δ = S2. If all
δ /∈ Aut(S2) then S1, S2 are not isotopic.

In some sense, checking γ−1 Aut(S1)γ = Aut(S2) is reduced to checking
δ−1S1δ = S2.
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From this procedure we get the following result: Two isotopic semifields
satisfy S1 = S2, so the problem is reduced to checking δ−1S1δ = S1.
Recall S1 is a diagonal matrix with two Singer cycles:

Theorem (Göloğlu, K., 2022)

If two sufficiently nice bivariate semifields defined over Fpm × Fpm are
isotopic then there exists an isotopism γ = (N, L,M) ∈ ΓL(2,Fpm )3

between them.

This simplifies the isotopy question for all nice bivariate semifields.

Isotopisms of the form γ = (N, L,M) ∈ ΓL(2,Fpm )3 are (comparatively)
easy to determine.
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The known commutative semifields of size pn, p odd

Family Count Proven in Bivariate?
The finite field 1 trivial ≈ Yes

Dickson ≈ n/4 1905 Yes
Albert’s twisted Fields ≈ n/2 1961 ≈ Yes

Ganley 1 (p = 3 only) 1981 No
Cohen-Ganley 1 (p = 3 only) 1982 No

Coulter-Matthews-Ding-Yuan 2 (p = 3 only) 2006 No
Zha-Kyureghyan-Wang ?? 2008 No
Budaghyan-Helleseth ≈ n/2 2009 Yes

Bierbrauer3 ≈ n/2 2010 No
Bierbrauer4 ≈ n/2 2010 No
Zhou-Pott ≈ n2 2013 Yes
Göloğlu-K. ≈ pn/4 2022 Yes

Lukas Kölsch University of South Florida 23



The known commutative semifields of size pn, p odd

Pott, A.: Almost perfect and planar functions, Designs, Codes, Cryptography
(2016)

This problem is now solved!

This also yields the biggest family of symmetric MRD codes!
Applying the same technique to the non-commutative family of Taniguchi
semifields yields the best bound for the number of odd characteristic
semifields: ≈ p2/3n non-isotopic semifields of size pn (Gologlu, K., 2023)

Lukas Kölsch University of South Florida 24



The known commutative semifields of size pn, p odd

Pott, A.: Almost perfect and planar functions, Designs, Codes, Cryptography
(2016)

This problem is now solved!

This also yields the biggest family of symmetric MRD codes!
Applying the same technique to the non-commutative family of Taniguchi
semifields yields the best bound for the number of odd characteristic
semifields: ≈ p2/3n non-isotopic semifields of size pn (Gologlu, K., 2023)

Lukas Kölsch University of South Florida 24



The known commutative semifields of size pn, p odd

Pott, A.: Almost perfect and planar functions, Designs, Codes, Cryptography
(2016)

This problem is now solved!

This also yields the biggest family of symmetric MRD codes!
Applying the same technique to the non-commutative family of Taniguchi
semifields yields the best bound for the number of odd characteristic
semifields: ≈ p2/3n non-isotopic semifields of size pn (Gologlu, K., 2023)

Lukas Kölsch University of South Florida 24



Bivariate constructions

There are many bivariate semifields, often found using ad hoc
constructions based on informed guesses off computer searches.

Question
Is there a way to unify these bivariate constructions?

This might open the door also for generalizations for "multivariate"
constructions.
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Definition
Let L be a field. An element T ∈ ΓL(d , L) is called irreducible if the only
invariant subspaces of T are {0} and Ld .

NOTATION: Let T ∈ ΓL(2, L) ∼= GL(2, L) o Aut(L) with associated
automorphism σ. Then write

T = MT xσ, where MT ∈ GL(2, L).
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Theorem (Jha, Johnson, 1989)

Let L be a finite field, T be an irreducible element of ΓL(d , L). Fix an
L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
cyclic semifield.

This construction is equivalent to a construction using skew-polynomial
rings.
For d = 2 we get bivariate semifields, which are equivalent to the
Hughes-Kleinfeld semifields found in 1960.
Is it possible to extend the cyclic semifield construction to cover more
known semifields?
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Theorem (Sheekey, 2020)

Let L = Fpn be a field, T be an irreducible element in ΓL(d ,Fpn ) with
associated field automorphism σ of order k with fixed field K. Let further
ρ be an automorphism of Fpn with fixed field K ′ ≤ K and η ∈ L chosen
such that

NL : K ′(η)NK : K ′((−1)dk det(MT )) 6= 1

Fix an L-basis of V = Ld , say {e0, . . . , ed−1}. Define a multiplication

x ◦ y =
d−1∑
i=0

yiT i (x) + ηyρ0T d (x),

where y =
∑d−1

i=0 yiei . Then ST = (V ,+, ◦) is a pre-semifield, called a
twisted cyclic semifield.
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Theorem
Let L = Fpn be a field, x, y ∈ Ld and T be an irreducible transformation
in ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K. Then the mappings F : Ld → Ld defined by

Fy(x) =
d−1∑
i=0

yiT i (x) + ydT d (x)

are non-singular for any 0 6= y = (y1, . . . , yd−1) if yd = 0 or

NL : K (y0/yd ) 6= (−1)dkNL : K (det(MT )).

These are just right-multiplications of the twisted cyclic semifields.
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Corollary

Let L = Fpn be a field, x ∈ Ld and T be an irreducible transformation in
ΓL(d ,Fpn ) with associated field automorphism σ of order k with fixed
field K and inverse σ. Then the mappings F : Ld → Ld defined by

Fy1,...,yd−1(x) =
d−1∑
i=1

yiT i−1(x) + ηT d−1(x) + det(MT )σT−1(x)

for any y1, . . . , yd−1 are non-singular for any η ∈ L with
NL : K (η) 6= (−1)d(k−1).

Proof.
Compose with T−1 and pick coefficients correctly.

These are A LOT of non-singular mappings! To construct a twisted cyclic
semifield, Sheekey fixes a transformation T .
IDEA: We do not fix T but change it depending on y1, . . . , yd−1.

Lukas Kölsch University of South Florida 30



Construction (Construction 1)

Let L = Fpm , V = L2, x, y ∈ L2 with y = ( y0
y1 ) and σ be a field

automorphism of L with fixed field K and σ its inverse. Further, let
Ta ∈ ΓL(2, L), a ∈ L∗ be irreducible transformations satisfying
Ta + Tb = Ta+b for any a, b ∈ L where we set T0 = T−10 = 0. Then

x ◦ y = y0x + ηTy1(x) + det(MTy1
)σT−1y1 (x)

defines a presemifield for any η ∈ L with NL : K (η) 6= 1.

Proof.
No zero divisors: Assume x ◦ y = 0. If y1 = 0 then y0x.
If y1 6= 0, then use Sheekey for d = 2.
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A slight variation:

Construction (Construction 2)

Let V = L2, x, y ∈ V with y = ( y0
y1 ). Let further σ be a field

automorphisms of L with fixed field K. Further, let Ta ∈ ΓL(2, L), a ∈ L∗

be irreducible transformations satisfying Ta + Tb = Ta+b for any
a, b ∈ L, where we set T0 = 0. Then

x ◦ y = y0x + Ty1(x)

defines a presemifield.
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Definition
We call a mapping T : L→ ΓL(2, L) ∪ {0} admissible if

1. T (0) = 0,

2. T (a) + T (b) = T (a + b) for any a, b ∈ L,

3. T (a) ∈ ΓL(2, L) is irreducible for all a ∈ L∗.

These sets immediately produce semifields via the constructions.
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A trivial admissible mapping

Definition
We call a mapping T : L→ ΓL(2, L) ∪ {0} admissible if

1. T (0) = 0,

2. T (a) + T (b) = T (a + b) for any a, b ∈ L,

3. T (a) ∈ ΓL(2, L) is irreducible for all a ∈ L∗.

Fix irreducible T ∈ ΓL(2, L). Then set T (a) = aT .
This admissible mapping together with the construction just returns
Sheekey’s twisted cyclic semifields.
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2-dimensional irreducible semilinear transformations

We need to find "better", more interesting admissible mappings. To do
this, we need to understand irreducible semilinear transformations better.

Proposition

The transformation T ∈ ΓL(2, L) with associated
MT =

( 0 α
1 β
)
∈ GL(2, L) and field automorphism σ is irreducible if and

only if Xσ+1 − βX − α = 0 has no solutions in L.

This is a sufficient classification since it is enough to classify up to
GL(2, L)-conjugacy (by isotopy).
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Proposition (Admissible mapping 1)

Define T : L→ ΓL(2, L) ∪ {0} such that T (0) = 0 and for a 6= 0 define
T (a) ∈ ΓL(2, L) with associated field automorphism σ and associated
matrix Ma ∈ GL(2, L) via

Ma =
(

0 aα
aτ 0

)

for an arbitrary, nontrivial field automorphism τ . Write σ : x 7→ xpk ,
τ : x 7→ xpl , 0 ≤ k, l < m. Then T is admissible if and only if either

I α is a non-square; and k = 0 or gcd(m, l)/ gcd(m, k, l) is odd; or

I k 6= 0, α is not a (pgcd(m,k,l) + 1)-st power and
gcd(m, l)/ gcd(m, k, l) is even.
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Proposition (Admissible set 2)

Define T : L→ ΓL(2, L) ∪ {0} such that T (0) = 0 and for all a 6= 0 let
T (a) ∈ ΓL(2, L) with associated field automorphism σ via

Ma =
(

0 aα
aσ2 aσβ

)
.

Then T is admissible if and only if P(X ) = Xσ+1 − βX − α ∈ L[X ] has
no roots in L.
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Recreating known semifields

Family Construction Admissible Mapping Notes
(Generalized) Dickson Construction 2 Admissible Mapping 1 —

Knuth I Construction 2 Admissible Mapping 2 —
Knuth II,III,IV, Construction 2 trivial —
Hughes-Kleinfeld

Bierbrauer, Construction 1 trivial Contains comm. SF
Budaghyan-Helleseth

Dempwolff Construction 1 trivial —
Zhou-Pott Construction 1 Admissible Mapping 1 —
Taniguchi Construction 1 Admissible Mapping 2 Largest known construction

(Twisted) cyclic semifields Constructions 1, 2 trivial only covers d = 2

Table: Known infinite families of semifields of order p2m and how to recreate
them
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Some new semifields

We also find new semifields using Construction 1, Admissible mapping 1.
They are equivalent to a SF on L2 with multiplication:(

x0
x1

)
◦

(
y0
y1

)
=
(
x1yσ1 − ηxσ1 y1 + α(x0yσ0 − ηxσ0 y0)

xτ0 y1 + x1yτ0

)
.

for suitably chosen η, α ∈ L, σ, τ ∈ Gal(L). For η = −1 we get the
commutative Zhou-Pott semifields.
Recall σ : x 7→ xpk , so these new semifields are also biprojective. The
previous techniques apply!
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Theorem (K., 2025+)

Let S1 = (L2,+, ◦1) = Sσ,τ,α1,η1 and S2 = (L2,+, ◦2) = Sσ2,τ2,α2,η2 be
two semifields defined on L2 with σ : x 7→ xpk , τ : x 7→ xpl , k, l < m/2
and k 6= l . Let K be the fixed field of σ. S1 and S2 are isotopic if and
only if σ2 = σ, τ2 = τ , and there exists a field automorphism ρ of L such
that

I NL : K (η1)ρ = NL : K (η2), and

I αρ1
α2
∈ Lσ+1Lτ−1.

In particular, if NL : K (η) 6= NL : K (−1) our SF are not isotopic to
Zhou-Pott semifields.
One can show that the new family of semifields contains SF not
contained in any known family of semifields.
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Multivariate semifields

This gives a good explanation of (almost all) bivariate semifields!

Still not enough for Kantor’s conjecture. . .

We cannot just look at degree 2 extensions.

⇒ Search for multivariate Semifields
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Multivariate semifields
Let q = pm and define F : F3

q → F3
q via F (x , y , z) = (f , g , h), where

f , g , h : F3
q → Fq are

f (x , y , z) = xσ+1 + ayσz + bxσy + cxσz ,

g(x , y , z) = ayσ+1 + zσx + bzσy + cxσy ,

h(x , y , z) = zσ+1 − xσy .

Theorem (Gologlu, K., 2025+)

Let a, b, c ∈ Fq be such that

Xσ
2+σ+1 + cXσ

2+σ + bXσ
2

+ a = 0

has no solution X ∈ Fq. Then x ◦ y = F (x + y)− F (x)− F (y) defines a
multiplication of a commutative presemifield.
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Let F : F3
q → F3

q via F (x , y , z) = (f , g , h), where f , g , h : F3
q → Fq are

f (x , y , z) = xσ+1 + ayσz + bxσy + cxσz ,

g(x , y , z) = ayσ+1 + zσx + bzσy + cxσy ,

h(x , y , z) = zσ+1 − xσy .

This was found using educated guesses and a computer search.
Note: f , g , h are homogeneous, so same techniques as earlier can be
applied and all isotopisms between semifields in the family are necessarily
semilinear over Fq.

We can prove this family contains some previously known family of
semifields.

We cannot generalize (yet). Equivalence is (still) hard.
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Summary

Problem (Kantor’s conjecture, 2003)

Prove that the number of non-isotopic semifields of odd order N = pn is
not bounded by a polynomial in N.

We need:

1. A new, general construction of semifields. We found some, but not
enough.

2. A technique to prove non-isotopy between semifields in this family.
We found one, but still not enough (?).
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What else is to be done.

Rank-metric codes: The twisted cyclic semifields can be embedded into
MRD codes with different parameters in a very nice way. Is the same true
for our semifields?

In geometry: Semifields define projective planes. Since these semifields
are constructed in similar ways; can the planes be treated in a unifying
way? Can we find geometric structures (ovals,. . . ).
Can we somehow generalize our nice construction to d > 2 (i.e. start
with semilinear transformations in ΓL(d , L) with d > 2 —"multivariate
constructions").
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Thank you for your attention!

The talk is based on:

Göloğlu, F., Kölsch, L.: An exponential bound on the number of
non-isotopic commutative semifields. Transactions of the American
Mathematical Society, 2022.

Göloğlu, F., Kölsch, L.: Counting the number of non-isotopic Taniguchi
semifields. Designs, Codes, Cryptography, 2023.

Kölsch, L.: A unifying construction of semifields of order p2m. Preprint,
2024 (on arxiv).

. . . and ongoing projects with Faruk Göloğlu (Charles Univ. Prague).
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