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Block ciphers and their round functions
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Figure: An iterated (key-alternating) block cipher with r rounds and subkeys ki

that encrypts a plaintext m into a ciphertext c

Lukas Kölsch University of South Florida 2



The round function of a substitution permuation network
(SPN)
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Figure: A high-level view of one round of an SPN with an S-box S, linear layer
L and round key ki
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Differential attacks on SPNs

So an SPN consists of three steps that are repeated:

1. Key addition

2. S-box

3. Linear layer

Important: Differences are invariant under key addition and differences
can be tracked through the linear layer:
L(x + a) − L(x) = L(x + a − x) = L(a).
So analysis can be broken down to the S-box level!
S-boxes in SPNs need to be bijective to allow decryption.
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Differential uniformity

Definition (Differential Uniformity)

The differential uniformity δF of a function F : Fn
2 → Fn

2 is defined as:

δF = max
a∈Fn

2
∗,b∈Fn

2

|{x ∈ Fn
2 : F (x + a) + F (x) = b}|.

The differential uniformity tells us if there are statistical biases in how
differences propagate through a function.
The S-box should have low differential uniformity!
It is easy to see that F (x + a) + F (x) = F ((x + a) + a) + F (x), so
solutions always come in pairs.
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APN functions

Definition
A function F : Fn

2 → Fn
2 is called Almost Perfect Nonlinear (APN) if its

differential uniformity δF is 2 (the lowest possible).

To defend optimally against differential attacks in an SPN one is thus
interested in bijective APN functions/APN permutations.

Goal
Construct APN permutations F : Fn

2 → Fn
2.
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APN permutations

Constructing infinite families of APN functions is quite difficult.
Thousands of examples have been constructed by computer in low
dimensions n = 7, n = 8, . . . .

All known APN functions are equivalent to either monomials F (x) = xd

for some d or quadratic, i.e., F (x + a) + F (x) is F2-affine for all
a ̸= 0. . . except one sporadic counterexample!

If n is even then neither monomials nor quadratic functions can be
permutations.
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Edel-Pott function

Goal
Construct APN functions that are inequivalent to quadratic functions and
monomials.

The only known such APN function is the Edel-Pott function defined in 6
variables, found using the switching construction and computer searches
(Edel, Pott, 2008).

So far, this function has not been generalized.
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Degree of a (vectorial) Boolean function

Boolean functions f : Fn
2 → F2:

f (x1, . . . , xn) = x1 + x2 + · · · + xn + 1
Degree 1 function, or affine function

f (x1, . . . , xn) = x1 + x1x2 + x3 + · · · + xn

Degree 2 function, or quadratic function

f (x1, . . . , xn) = x1x2x4 + x1x2 + x3 + · · · + xn + 1
Degree 3 function, or cubic function

Degree of F : Fn
2 → Fn

2 is maximum degree of its coordinate functions.
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Discrete derivatives

Definition
Let F : Fn

2 → Fn
2 be a function. Then, the mapping

∆v F (x) = F (x) + F (x + v) is called the derivative of F in direction
v ∈ Fn

2. For for a set S = {v1, . . . , vn}, we also define
∆SF (x) = ∆v1(∆v2 , . . . , (∆vn F (x)), . . . , ).

The degree of the derivative is always smaller than the degree of the
original function.
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Differential uniformity via discrete derivative

Definition (Differential Uniformity)

The differential uniformity δF of a function F : Fn
2 → Fn

2 is defined as:

δF = max
a∈Fn

2
∗,b∈Fn

2

|{x ∈ Fn
2 : F (x + a) + F (x) = b}|.

Definition (Differential Uniformity, equivalent formulation)

The differential uniformity δF of a function F : Fn
2 → Fn

2 is defined as:

δF = max
a∈Fn

2
∗,b∈Fn

2

|{x ∈ Fn
2 : ∆aF (x) = b}|.
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Fast points

Sometimes (though rarely) the degree of a (vectorial) Boolean function
decreases by more than one when taking the derivative in a specific
direction.

Definition (Fast points)

We say that v ∈ Fn
2 is a fast point of a function F : Fn

2 → Fn
2 if

deg(∆v F (x)) < deg(F (x)) − 1.
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Peculiar properties of the Edel-Pott function

The Edel-Pott function is cubic.

It is however almost quadratic in the sense that many discrete derivatives
are linear.

In other words: It has many fast points!

This was not a goal of the original construction by Edel and Pott! It was
observed by Suder in 2019.
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Cubic APN functions via fast points

Goal
Construct other cubic APN functions with many fast points.

Theorem
The set of all fast points of F : Fn

2 → Fn
2 forms an F2-vector space.

Edel-Pott function: F : F6
2 → F6

2, three dimensional fast point space.
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Construction idea

We want to construct a cubic APN function F : Fn
2 → Fn

2.

Decompose Fn
2 = V ⊕ W .

Set F = G + H, where G is cubic but ∆v G = 0 for all v ∈ V and H is a
quadratic APN function.

Then F has fast point space V .

We need conditions on G such that F remains APN.
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The condition

Theorem (Kölsch, Polujan, Suder)

Let Fn
2 = V ⊕ W and F = G + H be a function on Fn

2 where G is such
that ∆v G(x) = 0 for any v ∈ V and H is an APN function. Then F is
APN if and only if

{∆w ,w ′G(x) : x ∈ Fn
2}∩

{∆w+v ,w ′+v ′H(x) : v , v ′ ∈ V , x ∈ Fn
2} = ∅

for any w , w ′ ∈ W .
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Using the theorem

Fn
2 = V ⊕ W .

G cubic with ∆v G(x) = 0 for v ∈ V .

H quadratic APN.

Condition: For all w , w ′ ∈ W :

{∆w ,w ′G(x) : x ∈ Fn
2} ∩ {∆w+v ,w ′+v ′H(x) : v , v ′ ∈ V , x ∈ Fn

2} = ∅.

Fix n, V , W , H. Compute admissible values for ∆w ,w ′G(x) and
reconstruct G from the second derivatives.
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Integrating vectorial Boolean functions

Compute admissible values for ∆w ,w ′G(x) and reconstruct G from the
second derivatives.

This is not always possible, and also not easy. An algorithm to construct
these "integrals" had to be found, based on previous work by Suder
(2017).
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Results

For n = 6 we were able to do successfully do this process for 9 "starting"
APN functions, where dim(V ) = 3 — all equivalent to Edel-Pott.

For n = 7, dim(V ) = 3, this process does not yield any solutions, for any
starting APN function, and any choice of V , W .
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Current and future work

For n = 7, dim(V ) = 4,

n = 8 is the big interesting case! dim(V ) = 3, dim(V ) = 4?

There are thousands of quadratic APN functions known in dimension 8. . .
Computational difficulties.

Theoretical work to examine when this approach can/cannot work.
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Thank you for your attention!
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